Información

Autor(es) Marine Branders, Maxime Parmentier
Fecha de entrega Sin fecha de envío
Tiempo límite de envío Sin límite de envío
Etiquetas de categoría Int

Etiquetas

Inicia sesión

Primitives et intégrales - 5.4

Théorème d'intégration par partie

Soient \(F : [a;b] \to \mathbb{R}\) et \(G : [a;b] \to \mathbb{R}\) dérivables et \(f : [a;b] \to \mathbb{R}\) et \(g : [a;b] \to \mathbb{R}\) avec \(F'=f\) et \(G'=g\).

Alors si les fonctions \(f.G : [a;b] \to \mathbb{R}\) et \(F.g : [a;b] \to \mathbb{R}\) sont intégrables, on a :

\begin{equation*} \int_a^b f.G = [F.G]_a^b - \int_a^b F.g \end{equation*}

Méthode de substitution

Soient \(F : [a;b] \to \mathbb{R}\) et \(G : [a;b] \to \mathbb{R}\) dérivables et \(f : [a;b] \to \mathbb{R}\) et \(g : [a;b] \to \mathbb{R}\) avec \(F'=f\) et \(G'=g\).

Alors si la fonction \(f \circ G . g : [a;b] \to \mathbb{R}\) est intégrable, on a :

\begin{equation*} \int_a^b f \circ G . g = [F \circ G]_a^b \end{equation*}

En utilisant le théorème d'intégration par partie ou la méthode de substitution, calculer l'intégrale de la fonction suivante.

\begin{equation*} h : [1;3] \to \mathbb{R} \end{equation*}
\begin{equation*} x \mapsto x.\frac{3}{2}\sqrt{1+x} \end{equation*}