Geometry - Cross product

The cross product $$\vec{v} \times \vec{w}$$ of two vectors $$\vec{v}$$ and $$\vec{w}$$ can be seen as a measure of how perpendicular they are.

It is defined in 2D as:

\begin{equation*} \vec{v} \times \vec{w} = \|\vec{v}\| \|\vec{w}\| \sin \theta \end{equation*}

where $$\|\vec{v}\|$$ and $$\|\vec{w}\|$$ are the lengths of the vectors and $$\theta$$ is the amplitude of the oriented angle from $$\vec{v}$$ to $$\vec{w}$$.

The cross product has a very simple expression in cartesian coordiantes. If $$\vec{v} = (v_x, v_y)$$ and $$\vec{w} = (w_x, w_y)$$ then

\begin{equation*} \vec{v} \times \vec{w} = v_x w_y - v_y w_x \end{equation*}
static double cross(Point v, Point w) {
return v.x * w.y - v.y * w.x;
}


Geometric interpretation

The cross product $$\vec{v} \times \vec{w}$$ can be seen as a measure of how perpendicular the two vectors are.

The sign of the cross product indicates whether $$\vec{w}$$ is to the left or to the right of $$\vec{v}$$.

• $$\vec{v} \times \vec{w} > 0$$: $$\vec{w}$$ is to the left of $$\vec{v}$$
• $$\vec{v} \times \vec{w} < 0$$: $$\vec{w}$$ is to the right of $$\vec{v}$$
• $$\vec{v} \times \vec{w} = 0$$: $$\vec{w}$$ and $$\vec{v}$$ are aligned In general, we take the angle between the vectors $$\theta$$ in $$]-\pi, \pi]$$ so that the dot product is positive if $$0 < \theta < \pi$$, negative if $$-\pi < \theta < 0$$ and zero if $$\theta = 0$$ or $$\theta = \pi$$: 