L’expression \(S = \frac{1}{5} \left( 1^2 + \left( \frac{6}{5} \right)^2 + \left( \frac{7}{5} \right)^2 + \cdots + \left( \frac{14}{5} \right)^2 \right)\) est interprétée comme une somme de Riemann, pour laquelle tous les intervalles ont la même longueur et la fonction est évaluée à l’extrémité de gauche de chaque intervalle. (i) Identifier le nombre de termes, la fonction, l’intervalle d’intégration, et le pas du découpage. (ii) Calculer la somme de Riemann, et comparer avec la valeur exacte de l’intégrale.
Français
en (English)
de (Deutsch)
el (ελληνικά)
es (Español)
fr (Français)
he (עִבְרִית)
nl (Nederlands)
nb_NO (Norsk (bokmål))
pt (Português)
vi (Tiếng Việt)
Liste des cours
S'enregistrer
Se connecter
Informations
Auteur(s) | Philippe Delsarte,Manon Oreins |
Date limite | Pas de date limite |
Limite de soumission | Pas de limite |
Étiquettes de catégories | Int |
Etiquettes
Dérivées
Equations/inéquations
Fonctions
Géométrie
Primitives/intégrales
Logarithme/exponentielle
Pourcentages
Problèmes
Probabilité/Statistiques
Simplification d'expression
Trigonométrie
Vecteurs
Asymptotes
Continuité
Niveau: difficile
Division
Fonctions exponentielles
Niveau: facile
Fonctions logarithmes
Fonctions réciproques
Limites
Niveau: moyen
Problèmes
Random
Suites
Se connecter
Veuillez vous enregistrer ou vous connecter pour voir la liste complète des cours et pouvoir soumettrez des réponses aux problèmes.